

產品規格書

Market Requirement Document

CUSTOMER:

PRODUCT :

MODEL:

PARAMETER:

DATE:

_____声表面谐振器

R433.92M

F11-DIP

承認後請寄回一份

PLEASE RETURN ONE COPY TO US SO THAT WE GET YOUR APPROVAL

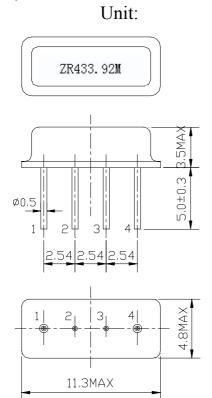
承認結果	客戶簽名	客戶承認章	日期	備注
CONCLUSION	SIGNATURE	STAMP	DATE	REMARK
合格				
ACCEPT				
不合格				
REJECT				

制表: 钟先生

审核:

(公章)

尊敬的客户:请您抽出一点时间,在7-10个工作日内将承认书回签,若未回签,以视默认.谢谢合作!


深圳市兆现电子有限公司

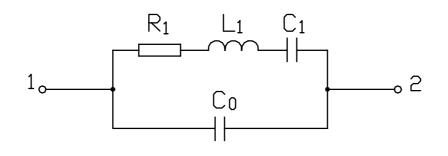
電話: 0755-27876236

http://www.zhaoxiandz.com

1. Package Dimension

(F-11)

Pin No. Function					
1. Inpu	t				
2. G	round				
3. G	round				
4. O	utput				


 $\mathbf{m}\mathbf{m}$

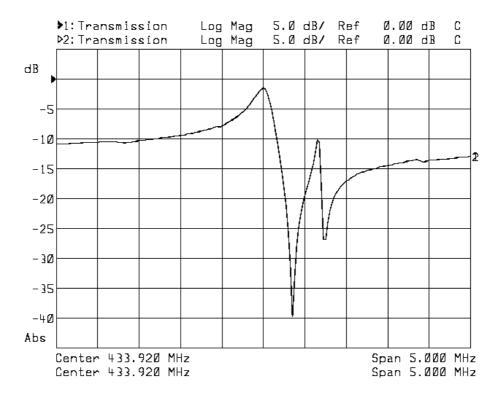
2. Marking

ZR433.92M

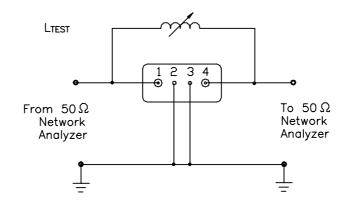
- 1. Color: Black or Blue
- 2. D: Manufacture's logo
- 3. R1: One-port SAW Resonator
- 4. 433.92: Center Frequency (MHz)

3. Equivalent LC Model

4. Performance


4.1 Maximum Rating

DC Voltage V _{DC}	10V		
AC Voltage V _{PP}	10V (50Hz/60Hz)		
Operation Temperature	-40 °C to +85°C		
Storage Temperature	-45 °C to +85°C		
RF Power Dissipation	0dBm		


4.2 Electronic Characteristics

Item		Units	Minimum	Typical	Maximum
Center Frequency		MHz	433.845	433.92 43	3.995
Insertion Loss		dB		1.3	2.5
Quality Factor	Unloaded Q			11,000	
	50Ω Loaded Q			2,000	_
Tem perature	Turnover Temperature	°C		25	
Stability	Turnover Frequency	KHz	_	fo	_
	Freq. Temp. Coefficient	ppm/°C ²		0.032	
Frequency Aging		ppm/yr		< <u>±</u> 10	
DC Insulation Resistance		MΩ	1.0		
RF Equivalent RLC Model	Motional Resistance R ₁	Ω		18	26
	Motional Inductance L ₁	μH		86	
	Motional Capacitance C ₁	fF		1.56	_
	Shunt Static Capacitance Co	pF	1.7	2.0	2.3

4.3 Frequency Characteristics

4.4 Test Circuit

Note: Reference temperature shall be $25 \pm 2^{\circ}$ C. However, the measurement may be carried out at 5°C to 35°C unless there is a dispute.

http://www.zhaoxiandz.com Tel:0755-27876236 QQ:769468702 E-mail:zhaoxiandz@163.com - 5 -

5. Reliability

5.1 Mechanical Shock: The components shall remain within the electrical specifications after 1000 shocks, acceleration 392 m/s^2 , duration 6 milliseconds.

5.2 Vibration Fatigue: The components shall remain within the electrical specifications after loaded vibration at 20 Hz, amplitude 1.5 mm, for 2 hours.

5.3 Terminal Strength: The components shall remain within the electrical specifications after pulled 2 kgs weight for 10 seconds towards an axis of each terminal.

5.4 High Temperature Storage: The components shall remain within the electrical specifications after being kept at the $85^{\circ}C \pm 2^{\circ}C$ for 48 hours, then kept at room temperature for 2 hours.

5.5 Low Temperature Storage: The components shall remain within the electrical specifications after being kept at the $-25^{\circ}C \pm 2^{\circ}C$ for 48 hours, then kept at room temperature for 2 hours.

5.6 Temperature Cycle: The components shall remain within the electrical specifications after 5 cycles of high and low temperature testing (one cycle: 80° C for 30 minutes $\rightarrow 25^{\circ}$ C for 5 minutes $\rightarrow -25^{\circ}$ C for 30 minutes)than kept at room temperature for 2 hours.

5.7 Solder-heat Resistance: The components shall remain within the electrical specifications after dipped in the solder at 260°C for 10 ± 1 seconds, then kept at room temperature for 2 hours. (Terminal must be dipped leaving 1.5 mm from the case).

5.8 Solder Ability: Solder ability of terminal shall be kept at more than 80% after dipped in the solder flux at $230^{\circ} \pm 5^{\circ}$ for 5 ± 1 seconds.

6. Remarks

6.1 Static voltage

Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.

6.2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid

ultrasonic cleaning.

6.3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.